報(bào)告人:申俊(四川大學(xué))
主持人:陳鋒
時(shí) 間:2023.7.8 9:00-10:00
地 點(diǎn):國盛大酒店福運(yùn)廳
主辦單位:長春大學(xué)理學(xué)院
報(bào)告人簡介:四川大學(xué)副教授,博士生導(dǎo)師, 四川省學(xué)術(shù)和技術(shù)帶頭人后備人選;曾在英國倫敦帝國理工學(xué)院、美國楊百翰大學(xué)訪問;主持國家自然科學(xué)基金面上項(xiàng)目、青年基金、博士后基金、四川省面上項(xiàng)目各1項(xiàng),參加國家重大、重點(diǎn)項(xiàng)目各1項(xiàng);在《Journal of Differential Equations》、《Journal of Dynamics and Differential Equations》、《Discrete and Continuous Dynamical Systems-Series A》、《SCIENCE CHINA Mathematics》、《Physica D》等上面發(fā)表文章數(shù)篇。
觀點(diǎn)綜述:In thistalk,we study long time dynamics of a randomly perturbed non-autonomous coupled system, whose coordinate satisfies a semilinear parabolic equation with an additive noise, and coordinate satisfies a differential equation whose solutions do not converge too rapidly. The noise is either the white noise induced by a Brownian motion or a stationary process whose integral is approximating. After addressing certain assumptions for such system, we show that for(resp.) with respect to the noise(resp. integral of there exists a invariant manifold which is exponentially attracting any other solution outside it. Also, as tends to 0, the invariant manifold and its derivative in for the case are approaching to those for.